

RadiCal a radically new approach to model the impact of solar radiation

a physically accurate, flexible and efficient method to model solar-related energy flows

What is the problem?

The problem

shades, glazing, façade, sill,...

complex Light-surface interactions

TRANSMISSION ABSORPTION REFLECTION

Angular dependency Complex refractive index Surface topography (roughness) Wavelength dependency Polarization effects Diffraction

...

AEE INTEC

What is the state of the art?

List Calc (F9) New Doby Delete	D R 1355 Name [infot_200eg_staring # Layer: 2 12 30 16 Height [000.01 mm Environment[C12H IS Width [000.01 mm IS Width [000.01 mm Converted 15 Width [000.01 mm Converts 96.00 mm Mode [III] 16 Width [III]							1 2 3											
Report																			
riguance		ID	Name	Mode	Thick	Film T	ol Bre	1 Beal2	Twie	Buie1	Buie2	Tir	F1	F2	Cond	Dion (mm)	Dhot (mm)	Dright (mm)	Dieft (mm)
	Shade 1	++ 19145	blinds 20deg		59.1	1										0.0	0.0	0.0	0.0
	Gap 1	H 1	Air		10.0														
	 Glass 2 	++ 4493	clearlite_6.gvb	#	5.8	0.8	47 0.0	5 0.075	0.895	0.090	0.080	0.000	0.840	0.840	1.000				
	Gap 2	•• 9	Air (10%) / Argon (90%)	ŧ	16.0														
	Glass 3	↔ 4452	top11onclearite_6.gvb	#	5.8	0.e	01 0.3	0.250	0.892	0.051	0.056	0.000	0.043	0.841	1.000				
	Center of Glass Resu	ts Temper SC	rature Data Optical Dat SHGC	a Angi Rel V	ular Data Ht. Gain V/m2	Colo	Propertie Tvis	s Radiar	ice Resu Keff W/m-K	ls	ayer 1 K W/m-K	eff	Gap 1 I W/m	Keff -K	Laye	r 2 Kell /m-K	Gap 2 Keff W/m-K	Layer 3 Ke W/m-K	sff
	Ufactor W/m2-K		2		?		?		?		?		?			?	?	?	

AEE INTEC

© LBNL - large integrating sphere

© Fraunhofer IBP – sun simulator

What is my solution?

The problem

Decomposition SENDER / RECEIVER

Half-year INCIPs – World (south, clear horizon)

TU Graz

AEE INTEC

SIOP – Solar Incidence Operator

- used to evaluate the effect of a INCIP on the target (window, façade,...)
- can describe various physical quantities of interest:
 - transmitted power (energy) Ο
 - absorbed power (energy) Ο
 - reflected power glare Ο Ο
 - spectral power Ο Ο
 - light engineering params Ο (illuminance, lum. intensity)
- directional information
- Ο . . .

RadiCal workflow and SIOP

AEE INTEC

Graz

How is it different?

 \rightarrow Physically based raytracing \rightarrow SIOP - functional form

SIOP – raw data

AEE INTEC

Graz

SIOP – functional form

spherical harmonics expansion

$$Y_{lm}(\theta, \varphi) = C_l^m \cdot P_l^m(\cos \theta) \cdot e^{im\varphi}$$
$$C_l^m = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}}$$

$$SIOP(\theta, \varphi) = \sum_{j=0}^{jmax} s_j Y R_j(\theta, \varphi)$$

deployment (e.g. XML):

$$SIOP = \{ (j_1, c_1), (j_2, c_2) \dots (j_n, c_n) \}$$

AEE INTEC

az

SIOP functional form

coefficients are determined **by non-linear optimization**

smooth form

1440(!) samples/ discrete directions

Empirical scattering models

Scattering of light – empirical models

→ Empirical models quickly "explode" They get too complex and require too many parameters and patches (i.e. additional models)

→ Check underlying physics and create a physically-based model that can cover "most" cases

Electrodynamics – physical optics

AEE INTEC

Electrodynamics – physical optics

 \rightarrow many effects arise naturally now:

- \rightarrow R, T, A intensities
- \rightarrow angle of refraction
- \rightarrow volumetric absorption
- → wavelength dependencies (entire global radiation spectrum is simulated!)
- \rightarrow angular dependencies
- \rightarrow polarisation effects

Complex-valued Fresnel equations

$$\begin{split} \tilde{n}_{i}(\lambda) &= n_{i}(\lambda) - i \cdot k_{i}(\lambda) \\ &sin(\tilde{\theta}_{2}) = \frac{\tilde{n}_{1}}{\tilde{n}_{2}}sin(\tilde{\theta}_{1}) \\ \tilde{\eta}_{i}^{s} &= \tilde{n}_{i}\cos(\tilde{\theta}_{i}) \quad \tilde{\eta}_{i}^{p} = \frac{\tilde{n}_{i}}{cos(\tilde{\theta}_{i})} \\ \tilde{\eta}_{i}^{s,p} &= \frac{\tilde{\eta}_{1}^{s,p}\tilde{E}_{1}^{s,p} - \tilde{H}_{1}^{s,p}}{\tilde{\eta}_{1}^{s,p}\tilde{E}_{1}^{s,p} + \tilde{H}_{1}^{s,p}} \\ \tilde{t}_{1 \rightarrow 2}^{s,p} &= \frac{2\tilde{\eta}_{1}^{s,p}}{\tilde{\eta}_{1}^{s,p}\tilde{E}_{1}^{s,p} + \tilde{H}_{1}^{s,p}} \\ T_{1 \rightarrow 2}^{s,p} &= |\tilde{t}_{1 \rightarrow 2}^{s,p}|^{2} \qquad \epsilon_{t1 \rightarrow 2}^{s,p} = \arg\left(\tilde{t}_{1 \rightarrow 2}^{s,p}\right) \\ R_{1 \rightarrow 2}^{s,p} &= |\tilde{r}_{1 \rightarrow 2}^{s,p}|^{2} \qquad \epsilon_{r1 \rightarrow 2}^{s,p} = \arg\left(\tilde{r}_{1 \rightarrow 2}^{s,p}\right) \end{split}$$

Stokes formalism

Graz

Additonally required models

sub-surface scattering

roughness microfacet-theory

AEE INTEC

The LSISRoughPol model

generic, physically based light-surface interaction model for many opaque and transparent materials.

simply defined by:

Generic material model demo – surface roughness variation

$\alpha = 0,20$ n(λ), k (λ) = float glass

Generic material model demo – refractive index variation

α = **0,05**

Graz

Demo Renderings using RadiCal in backward-raytracing mode

interreflections

Accurate modeling of coated triple glazing

AEE INTEC

MC-Raytracer – sampling SIOP data

- stochastic simulation method very EFFICIENT
- using random numbers / probability distribution functions to model physical processes
- energy conservation trivial: follow one ray sample from craddle to grave
- error-estimator: central limit theorem

AEE INTEC

Evaluation of SIOP - time series

Application example

AEE INTEC

Graz

Application example

accurate dynamic thermal simulation of glazings and facades

Application example

- Presumably most accurate dynamic simulation currently available.
- Includes all thermal masses.
- Simulation time for one year (minresolution): <1s

AEE INTEC

Application example – annual energy balance

RadiCal | D. Rüdisser | ES-SO workshop, May 2022

Preprint

BauSIM2022 in Weimar

Application example – real-world key figures

EE INTEC

Validation measurements - PyroScanner

Validation results - examples

Irradiation behind unshaded, west-oriented triple-glazed window model (red) vs. measurement (blue)

Irradiation behind shaded, south-oriented triple-glazed window model (Y-axis) vs. measurement (X-axis)

AEE INTEC

AEE INTEC

Graz

RadiCal

D. Rüdisser <u>d.ruedisser@aee.at</u>