

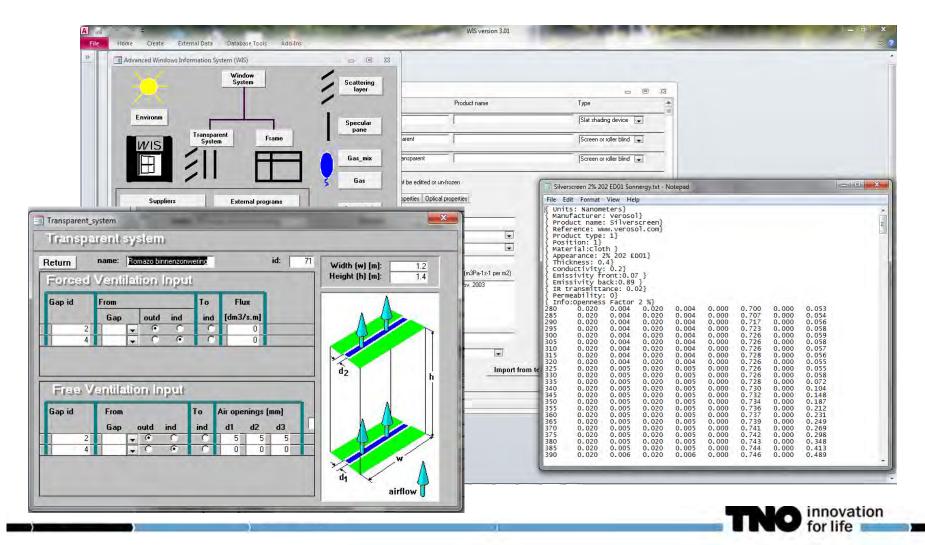
Extra energy savings with solar shading

17 April 2015 Martin Straver - Romazo

(based on TNO presentation Leo Bakker)

Energy savings with solar shading

- 1. Savings on the "cooling energy"
- 2. Savings on the "heating energy" by extra heat resistance



Calculation heat resistance solar shading

- Window Information System (WIS)
- European program TNO projectleader

EPG calculations

Energy savings heating + EPC- gain

by additional heat resistance from solar shading

- \rightarrow All windows have solar shading
- \rightarrow Heat resistance solar shading systems variety
- → Calculations afterwards adjustments (effect summer)

N Voorbeeld woning.epg - ENORM V1.4 - Woning- en Utiliteitsbouw

en al

Bestand Bewerken Database Help

|--|--|

D 🕼 🔛 🔍 🕹 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓			A		EP	G	sof	twar
🛃 Projectgegevens	Primair energiegebruik	CO2 en schil						
Schematisering	Deelpost		Energieg	ebruik gecon	verteerd naar	primaire ener	gie [MJ]	
Bouwkundig								
N Installaties		elektriciteit	aardgas	stookolie	hout, biomassa	externe warmte	externe koude	Totaal
Zonne-energie	Verwarming	0	33 8 1 5	0	0	0	0	36 322
Quatte	(hulpenergie)	2 507						
Verlichting	Warm tapwater	0	8 884	0	0	0	0	8 884
🗄 Resultaten	(hulpenergie)	0						
	Vester	0	0	0		0	0	0

Primair energiegebruik [MJ]	Waarde
Verwarming	36 322
Warm tapwater	8 884
Koeling	1 489
Bevochtiging	0
Ventilatoren	4 121
Verlichting	5 728
Totaal	56 543
Electriciteitsproductie gebouwgebonden	-1 338
Afgenomen energie	55 205
Geëxporteerde energie	0
Electriciteitsproductie niet gebouwgebonden	-3 104
EPtot	52 102
EP;adm;tot	36 748
Specifieke energieprestatie per m²	420

Deelpost	Energiegebruik geconverteerd naar primaire energie [MJ]							
	elektriciteit	aardgas	stookolie	hout, biomassa	externe warmte	externe koude	Totaal	
Verwarming	0	33 8 1 5	0	0	0	0	36 322	
(hulpenergie)	2 507							
Warm tapwater	0	8 884	0	0	Û.	0	8 884	
(hulpenergie)	0							
Koeling	0	0	0	0	0	0	0	
(hulpenergie)	0							
Zomercomfort	1 489						1 489	
Bevochtiging	0	0	0	0	0	0	0	
Ventilatoren	4 121						4 121	
Verlichting.	5 728						5 728	
Totaal	13 844	42 699	0	0	0	0	56 543	
Geproduceerd (EPus)	-1 338						-1 338	
Afgenomen energie	12 506	42 699	0	0	0	0	55 205	
Geproduceerd (nEPus)	-3 104						-3 104	
EPtot							52 102	

- 1 Inleiding
- 2 Doel en gebruik referentiewoningen
- > 3 Zes referentiewoningen uitgewerkt
- > 3.1 Tussenwoning
 - 3.2 Hoekwoning
 - 3.3 Twee-onder-een-kapwoning
 - 3.4 Vrijstaande woning
 - 3.5 Galerijcomplex
 - 3.6 Appartementencomplex
 - 4 Verantwoording van keuzes
 - 5 Een goede woning vergt aandacht
 - 6 Literatuurverwijzing

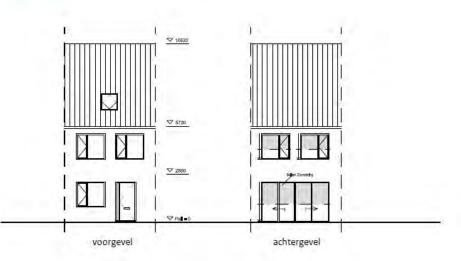
Colofon

3.1 Tussenwoning

6 Reference buildings used in st

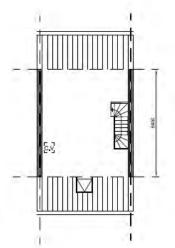
Algemene beschrijving

De oppervlakte van een tussenwoning is gemiddeld 125 m[€] (bron: MNW). In een tussenwoning zijn doorgaans drie slaapkamers aanwezig. Een tussenwoning komt in verschillende uitvoeringen voor, zowel met een zadel- of een lessenaarsdak als met een plat dak. Een zadeldak komt relatief vaak voor.





- 1 Inleiding
- 2 Doel en gebruik referentiewoningen
- > 3 Zes referentiewoningen uitgewerkt
- > 3.1 Tussenwoning
 - 3.2 Hoekwoning
 - 3.3 Twee-onder-een-kapwoning
 - 3.4 Vrijstaande woning
 - 3.5 Galerijcomplex
 - 3.6 Appartementencomplex
 - 4 Verantwoording van heuzes
 - 5 Een goede woning vergt aandacht
 - 6 Literatuurverwijzing


Colofon

Tekeningen

beganegrond

1° verdieping

2° verdieping

- 1 Inleiding
- 2 Doel en gebruik referentiewoningen
- > 3 Zes referentiewoningen uitgewerkt
 - 3.1 Tussenwoning

3.2 Hoekwoning

- 3.3 Twee-onder-een-kapwoning
- 3.4 Vrijstaande woning
- 3.5 Galerijcomplex
- > 3.6 Appartementencomplex
 - 4 Verantwoording van keuzes
 - 5 Een goede woning vergt aandacht
 - 6 Literatuurverwijzing

Colofon

3.6 Appartementencomplex

Algemene beschrijving

De oppervlakte van een meergezinswoning in de koopsector is gemiddeld 105 m² (bron: MNW). In dit gemiddelde zijn zowel luxe penthouses als eenvoudige galerijwoningen opgenomen. Een meergezinswoning heeft meestal twee slaapkamers.

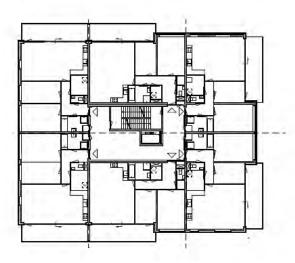
1 Infeiding

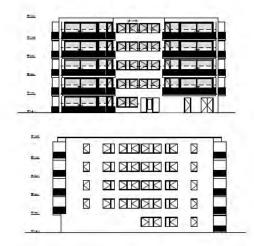
2 Doel en gebruik referentiewoningen

> 3 Zes referentiewoningen uitgewerkt

3.1 Tussenwoning

3.2 Hoekwoning


- 3.3 Twee-onder-een-kapwoning
- 3.4 Vrijstaande woning
- 3.5 Galerijcomplex
- > 3.6 Appartementencomplex
 - 4 Verantwoording van keuzes
 - 5 Een goede woning vergt aandacht
 - 6 Literatuurverwijzing


Colofon

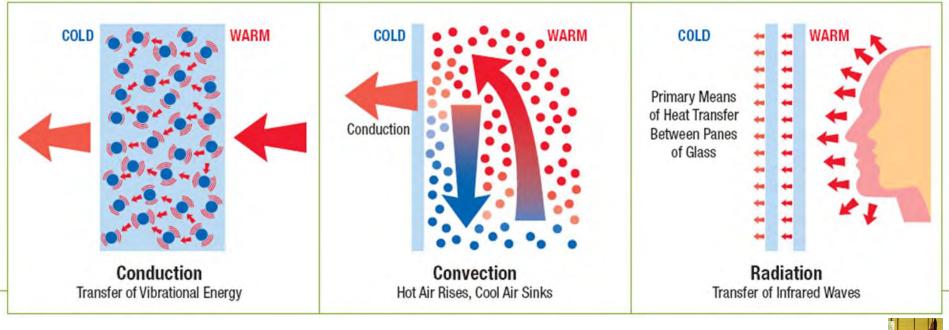
Gebiedsgebonden maatregelen en bijna energieneutrale woningen

	EMG variant 1	EMG variant 2	BENG
EPC volgens NEN 7120	0,54	0,40	0,16
Jaarlijks energieverbruik per m ² volgens NEN 7120	256 MJ/m ²	191 MJ/m ²	74 MJ/m ²
Jaarlijkse CO _z -emissie	51.394 kg	35.596 kg	10.275 kg

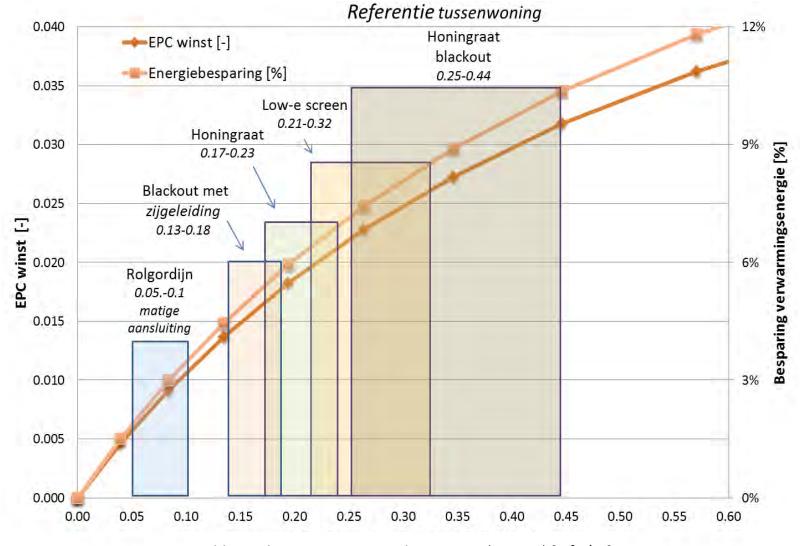
Tekeningen

Starting point

- Standard reference townhouse and apartment with EPC of 0,6
- Window size 140 cm X 120 cm
- U value 1,65 W/m2K = HR++ glazing in a wooden window frame
- The solar shading covers the entire window
- WIS program used for calculations



Heat transfer



o innovation for life

Compare mounting methods

Additionele warmteweerstand zonwering (ΔR_{ZONW}) [m²K/W]

Diagram 10: Energy savings on heating and potential EPC-gain by different types of interior shading for reference dwelling (tussenwoning).

NB - reference is to apply on all façade orientations shading without adapting U-value (variant 1, table 1).

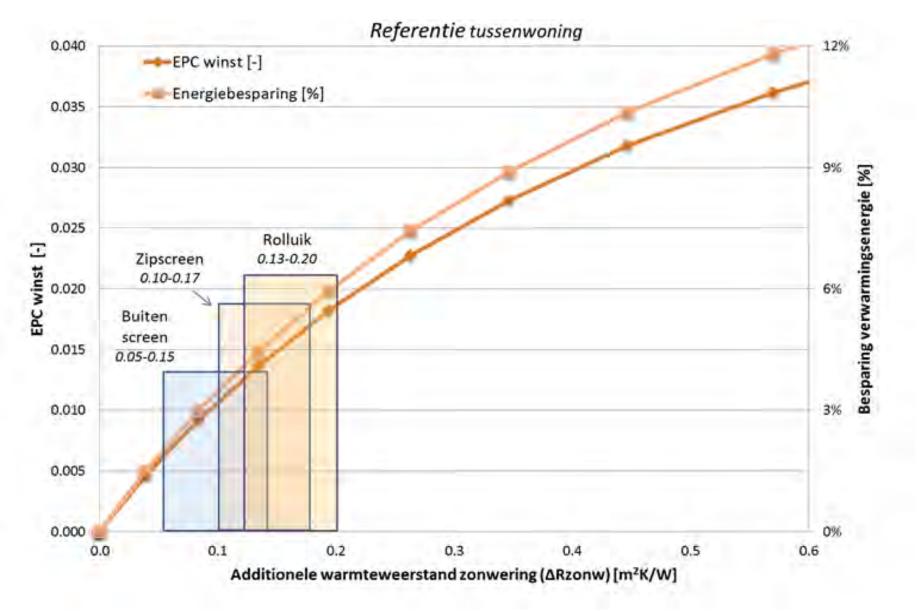


Diagram 11: Energy savings on heating and potential EPC-gain by different types of exterior shading for reference dwelling (tussenwoning).

NB - reference is to apply on all façade orientations shading without adapting U-value (variant 1, table 1).

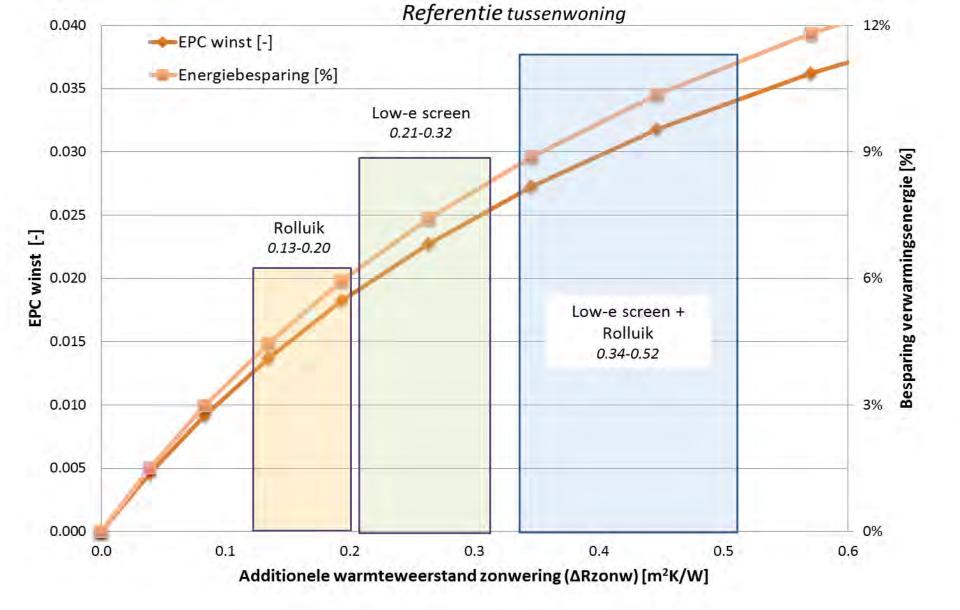


Diagram 12: Energy savings on heating and potential EPC-gain by roller shutter (exterior), a low interior escreen and a combination of both for the reference dwelling (tussenwoning).

Referentie appartementencomplex

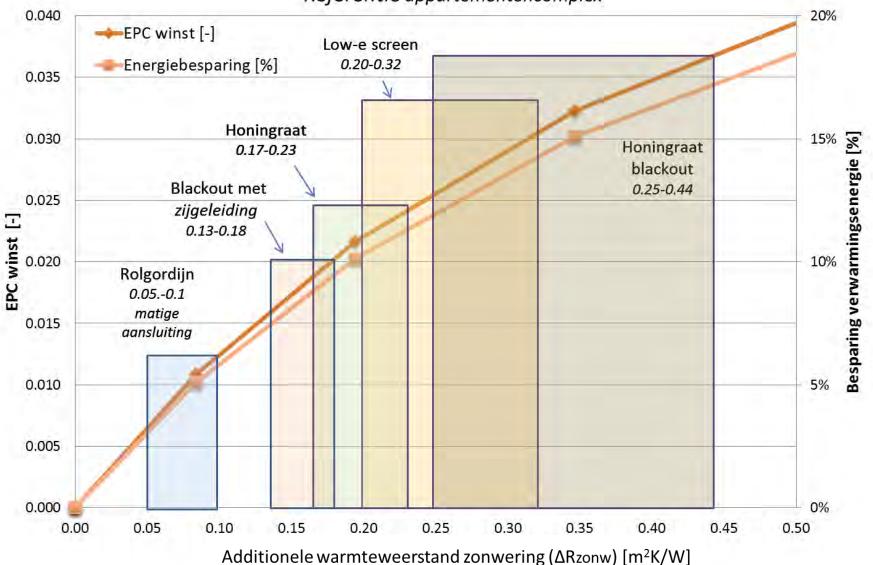


Diagram 13: Energy savings on heating and potential EPC-gain by different types of interior shading for reference dwelling (appartment).

NB - reference is to apply on all façade orientations shading without adapting U-value (variant 1, table 2).

Referentie appartementencomplex

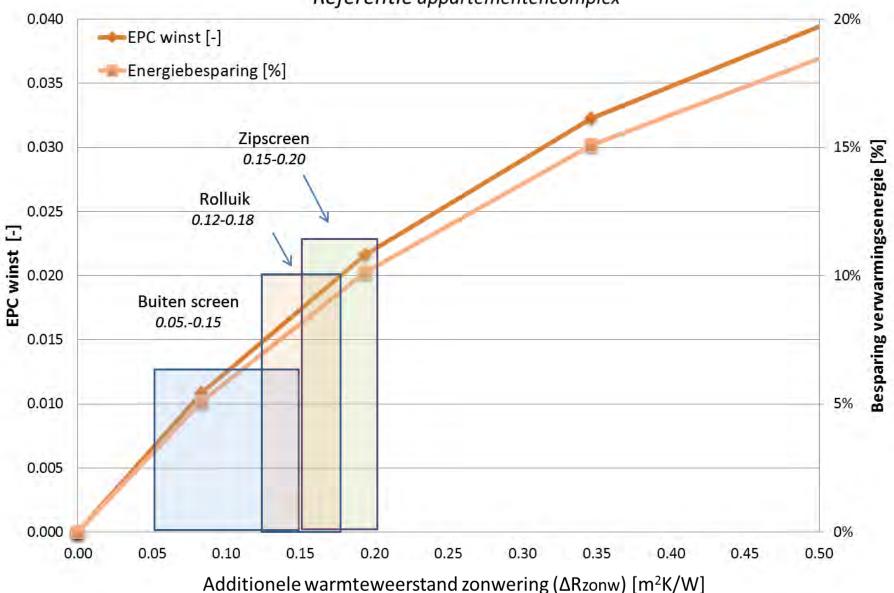


Diagram 14: Energy savings on heating and potential EPC-gain by different types of exterior shading for reference dwelling (appartment).

NB-reference is to apply on all façade orientations shading without adapting U-value (variant 1, table 2).

Referentie appartementencomplex

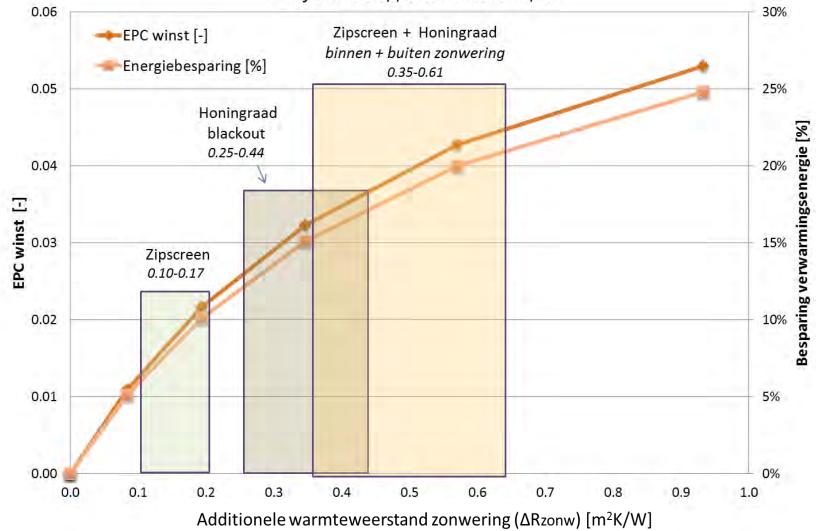


Diagram 15: Energy savings on heating and potential EPC-gain by an exterior zip screen, an interior honeycomb black-out and a combination of both for the reference appartment.

Conclusions

1. Heath resistance of solar shading is achieved by:

- 1. The mounted position of the solar shading
- 2. The airtightness of the material or system
- 3. The airtightness of the connection of the junction to the cavity
- 4. Coatings (for example Low-e coating)
- 5. Captured air in the solar shading itself (for example honeycomb)
- 2. The calculated savings on the energy consumption for heating by solar shading can achieve up to 17% for townhouses and 29% for apartments.
- 3. The EPC improvement is comparable for both townhouses and apartments
- 4. The method makes **determining and comparing** the energy demand for heating and EPC for (combinations) of solar shading products **easier**

Recommendations

1. Make sure that the cavity between the window and solar shading is as airtight as possible

2. If the solar shading system also covers the whole window frame the heat resistance of the whole window will be significantly higher.

3. Avoid thermal bridges for ex. by leaving space between the solar shading and the windowframe in case the solar shading also covers the window

4. The combination of interior and exterior solar shading improve the thermal insulation significantly

5. Automated systems can ensure solar shading is closed during the night in the heating season

